# Relay Connections

The GraphQL Cursors Connection Specification is an additional spec that extends GraphQL to support paginating over collections in a standardized way, defined by facebook's Relay GraphQL client (opens new window).

The spec defines several types:

  • Connections - the paginated 1:N relationship itself
  • PageInfo - an object describing the pagination information of the current relation
  • Edge - a type describing each item in the pagination
  • Node - the type that's being paginated over

An example query for a connection field looks something like this:

{
  queryName(first: 5, after: "cursor") {
    pageInfo {
      hasNextPage
      hasPreviousPage
      startCursor
      endCursor
    }
    edges {
      cursor
      node {
        id # additional fields
      }
    }
  }
}

The field can be paginated forwards by using first (number of items) and after (the current cursor), or backwards by using last (number of items) and before (the cursor).

Caliban ships with a set of abstract classes to make it easier to use Relay connections in your schema:

import caliban._
import caliban.schema.Schema.auto._
import caliban.schema.ArgBuilder.auto._
import caliban.relay._
import zio._

// The entity you want to paginate over
case class Item(name: String)

// The specific edge type for your connection.
// The default cursor implementation is a base64 encoded index offset,
// but you can easily implement your own cursor to support e.g
// cursor based pagination from your database.
case class ItemEdge(cursor: Base64Cursor, node: Item) extends Edge[Base64Cursor, Item]

object ItemEdge {
  def apply(x: Item, i: Int): ItemEdge = ItemEdge(Base64Cursor(i), x)
}

// The top level connection itself
case class ItemConnection(
  pageInfo: PageInfo,
  edges: List[ItemEdge]
) extends Connection[ItemEdge]

object ItemConnection {
  val fromList =
    Connection.fromList(ItemConnection.apply)(ItemEdge.apply)(_, _)
}


// The arguments for your resolver.
// These are the minimal set of fields needed,
// but you can easily customize it to add e.g
// sorting or filtering.
case class Args(
  first: Option[Int],
  last: Option[Int],
  before: Option[String],
  after: Option[String]
) extends PaginationArgs[Base64Cursor]


case class Query(connection: Args => ZIO[Any, CalibanError, ItemConnection])
val api = graphQL(
  RootResolver(
    Query(args =>
      for {
        pageInfo <- Pagination(args)
        items     = ItemConnection.fromList(List(Item("1"), Item("2"), Item("3")), pageInfo)
      } yield items
    )
  )
)

# Cursors

It's possible to implement your own cursor type to match with the underlying data source you have. This may be a database cursor, a date offset or something else which you use to efficiently filter your result set.

Start off by implementing a case class to represent your cursor:

case class ElasticCursor(value: String)

To turn your case class into a usable cursor, you need to do two things: implement the Cursor trait and specify a Schema for the case class to make sure it's always serialized as a scalar value.

First, let's implement the trait:

import java.util.Base64
import scala.util.Try

case class ElasticCursor(value: String)
object ElasticCursor {
  lazy val decoder = Base64.getDecoder()
  lazy val encoder = Base64.getEncoder()

  implicit val cursor: Cursor[ElasticCursor] = new Cursor[ElasticCursor] {
    type T = String
    def encode(a: ElasticCursor): String = {
      encoder.encodeToString(s"cursor:${a.value}".getBytes("UTF-8"))
    }
    def decode(s: String): Either[String, ElasticCursor] =
      Try(
        ElasticCursor(
          new String(decoder.decode(s), "UTF-8").replaceFirst("cursor:", "")
        )
      ).toEither.left.map(t => t.toString())

    def value(c: ElasticCursor): T = c.value
  }
}

and the schema:

implicit val schema: Schema[Any, ElasticCursor] = Schema.stringSchema.contramap(
  Cursor[ElasticCursor].encode
)